Hazard Standard Deviation extraction for Cordex Datasets#

import pandas as pd
import numpy as np
import os
import re
import shutil
import xarray as xr
from IPython.display import display, Markdown
from scipy.spatial import cKDTree

Extreme Temperature Hazards STD#

# Temperature indicators folders for the extreme temperature hazards
temp_daysAbove_folder = '/work/cmcc/dg07124/climax/indicators/cordex2/tempdays/tempDaysAbove/std_ensembles'
temp_percentiles_folder = '/work/cmcc/dg07124/climax/indicators/cordex2/tempPercentiles/std_ensembles'

temp_std_ensembles_folder = '/work/cmcc/dg07124/climax/indicators/cordex2/temp_std_ensembles'
# Load the coordinates of the airports from the Excel file
csv_file = '/users_home/cmcc/dg07124/climax/airports_coordinates.csv'
airports_df = pd.read_csv(csv_file)
airports_df
Airports Lat Lon
0 Milano Malpensa 45.63 8.73
1 Bergamo Orio al Serio 45.67 9.71
2 Milano Linate 45.45 9.28
3 Roma Fiumicino 41.80 12.25
4 Roma Ciampino 41.80 12.59
5 Napoli Capodichino 40.88 14.29
6 Palermo Punta Raisi 38.18 13.10
7 Catania Fontanarossa 37.47 15.07
8 Cagliari Elmas 39.25 9.06
if not os.path.exists(temp_std_ensembles_folder):
    os.makedirs(temp_std_ensembles_folder)

# Step 2: Copy files from temp_daysAbove_folder and temp_percentiles_folder to temp_avg_ensembles_folder
def copy_files_to_new_folder(source_folder, destination_folder):
    for file_name in os.listdir(source_folder):
        source_file = os.path.join(source_folder, file_name)
        destination_file = os.path.join(destination_folder, file_name)
        
        if os.path.isfile(source_file):
            shutil.copy(source_file, destination_file)  # Copy file

# Copy files from both folders
copy_files_to_new_folder(temp_daysAbove_folder, temp_std_ensembles_folder)
copy_files_to_new_folder(temp_percentiles_folder, temp_std_ensembles_folder)
# Define time periods and RCP scenarios
time_periods = ['2021-2050', '2041-2070', '2071-2100']
rcp_scenarios = ['rcp26', 'rcp45', 'rcp85']
# Create the KDTree for fast nearest-neighbor search
def create_kd_tree(latitudes, longitudes):
    coords = np.vstack((latitudes, longitudes)).T  # Shape (n, 2)
    tree = cKDTree(coords)
    return tree
# Function to process the netCDF files for each time period and RCP scenario
def process_netCDF_files(netcdf_folder, time_period, rcp_scenario, airports_df, tree):
    # Initialize the list to hold the extracted values (one row for each airport)
    extracted_values = []

    # Define columns for the indicators (fixed set of columns)
    columns = ['Airports', 'p95', 'p999', 'tempabove35', 'tempabove40', 'tempabove45']

    # Initialize the dictionary to hold values for each airport
    for _, row in airports_df.iterrows():
        extracted_values_airports = {'Airports': row['Airports']}
        for col in columns[1:]:
            extracted_values_airports[col] = np.nan  # Initialize all indicators to NaN for this airport

        # Loop through each netCDF file and check if it belongs to the given time period and RCP scenario
        for file in os.listdir(netcdf_folder):
            if file.endswith('.nc') and time_period in file and rcp_scenario in file:
                # print(f"Processingnetcdf_folderfile: {netcdf_folder}")
                # print(f"Processing file: {file}")

                # Open the netCDF file using xarray
                nc_file_path = os.path.join(netcdf_folder, file)
                ds = xr.open_dataset(nc_file_path)

                # Extract the lat/lon from the netCDF file
                lat = ds['lat'].values
                lon = ds['lon'].values

                # Flatten the 2D arrays to 1D for KDTree usage
                lat_flat = lat.flatten()
                lon_flat = lon.flatten()

                # Create a 2D array of lat/lon coordinates
                coords_flat = np.vstack((lat_flat, lon_flat)).T  # Shape: (n, 2)

                # Create a KDTree for fast nearest-neighbor search
                tree = cKDTree(coords_flat)

                # Extract the coordinates for each airport
                airport_coords = (row['Lat'], row['Lon'])

                # Find the closest coordinates from the netCDF lat/lon grid for the current airport
                closest_idx = tree.query([airport_coords], k=1)[1]  # Get index of closest point
                
                # Convert the flattened index to (y, x) coordinates
                closest_y, closest_x = np.unravel_index(closest_idx, lat.shape)

                # Extract the relevant variable value for each indicator
                extracted_value = ds['tasmax'].isel(y=closest_y, x=closest_x).values
                # print(f'extracted_value: {extracted_value.flatten()[0]}')

                # Check the indicator based on the filename and update the corresponding column
                if 'stdabove35' in file:
                    extracted_values_airports['tempabove35'] = extracted_value.flatten()[0]
                elif 'stdabove40' in file:
                    extracted_values_airports['tempabove40'] = extracted_value.flatten()[0]
                elif 'stdabove45' in file:
                    extracted_values_airports['tempabove45'] = extracted_value.flatten()[0]
                elif 'std95' in file:
                    extracted_values_airports['p95'] = extracted_value.flatten()[0]
                elif 'std999' in file:
                    extracted_values_airports['p999'] = extracted_value.flatten()[0]
                    

        # Add the extracted values for this airport to the list
        extracted_values.append(extracted_values_airports)

    # Convert the extracted values to a DataFrame
    df = pd.DataFrame(extracted_values, columns=columns)
    return df
# Create a KDTree using airport coordinates
tree = create_kd_tree(airports_df['Lat'], airports_df['Lon'])

# Process the files for each time period and RCP scenario and create separate DataFrames
dfs = {}  # Dictionary to store DataFrames for each time period + RCP combination

for time_period in time_periods:
    for rcp_scenario in rcp_scenarios:
        # Process the files for the given time period and RCP scenario
        df = process_netCDF_files(temp_std_ensembles_folder, time_period, rcp_scenario, airports_df, tree)
        if df is not None:
            dfs[f'{rcp_scenario}_{time_period}'] = df

# Display the DataFrames for each time period and RCP scenario
for key, df in dfs.items():
    print(f"Data for {key}:")
    df = df.set_index('Airports')
    # df['average'] = df.mean(axis=1)
    print(df)
    # save to CSV
    df.to_csv(f'/work/cmcc/dg07124/climax/indicators/cordex2/temp_std_ensembles/temp_std_{key}_data.csv', index=True)
Data for rcp26_2021-2050:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.681519  1.173082     3.318777     0.787577   
Bergamo Orio al Serio  0.657671  1.149640     3.564539     0.249772   
Milano Linate          0.612470  1.268595     4.648652     0.804932   
Roma Fiumicino         0.524879  0.825922     4.588714     0.216768   
Roma Ciampino          0.584376  0.827377     5.180357     0.228932   
Napoli Capodichino     0.424670  0.845480     3.800186     0.465685   
Palermo Punta Raisi    0.302887  0.615009     1.390151     0.232121   
Catania Fontanarossa   0.351584  0.753102     6.414966     1.084037   
Cagliari Elmas         0.476794  0.893550     7.222046     0.619808   

                       tempabove45  
Airports                            
Milano Malpensa           0.001843  
Bergamo Orio al Serio     0.000000  
Milano Linate             0.053435  
Roma Fiumicino            0.000000  
Roma Ciampino             0.000000  
Napoli Capodichino        0.071570  
Palermo Punta Raisi       0.000000  
Catania Fontanarossa      0.143384  
Cagliari Elmas            0.018426  
Data for rcp45_2021-2050:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.446618  1.010088     3.333919     0.809989   
Bergamo Orio al Serio  0.441997  0.935308     3.396257     0.533834   
Milano Linate          0.423465  0.907300     4.252840     1.307682   
Roma Fiumicino         0.387599  0.745171     4.653045     0.345611   
Roma Ciampino          0.400369  0.590373     4.664936     0.335586   
Napoli Capodichino     0.359800  0.858633     3.943516     0.550707   
Palermo Punta Raisi    0.308694  0.471801     2.051202     0.342317   
Catania Fontanarossa   0.233058  0.670039     5.359851     1.529307   
Cagliari Elmas         0.361362  0.767072     6.100119     1.202726   

                       tempabove45  
Airports                            
Milano Malpensa           0.016583  
Bergamo Orio al Serio     0.000000  
Milano Linate             0.038050  
Roma Fiumicino            0.009213  
Roma Ciampino             0.000000  
Napoli Capodichino        0.082207  
Palermo Punta Raisi       0.000000  
Catania Fontanarossa      0.271141  
Cagliari Elmas            0.025459  
Data for rcp85_2021-2050:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.483706  1.226128     3.741642     1.194269   
Bergamo Orio al Serio  0.505754  1.372640     4.033515     0.815977   
Milano Linate          0.466678  1.423913     4.642170     1.776248   
Roma Fiumicino         0.449555  1.080606     5.783633     0.533596   
Roma Ciampino          0.469419  1.009794     5.910766     0.547640   
Napoli Capodichino     0.406028  1.018716     4.523608     0.626797   
Palermo Punta Raisi    0.271204  0.714727     1.822134     0.343559   
Catania Fontanarossa   0.311886  0.899216     7.422970     2.053937   
Cagliari Elmas         0.389761  1.210050     7.756357     1.100951   

                       tempabove45  
Airports                            
Milano Malpensa           0.054916  
Bergamo Orio al Serio     0.000000  
Milano Linate             0.148881  
Roma Fiumicino            0.009213  
Roma Ciampino             0.000000  
Napoli Capodichino        0.119949  
Palermo Punta Raisi       0.000000  
Catania Fontanarossa      0.253224  
Cagliari Elmas            0.045134  
Data for rcp26_2041-2070:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.613934  1.173375     2.581564     0.629350   
Bergamo Orio al Serio  0.592966  1.119159     2.953666     0.240175   
Milano Linate          0.590273  1.140470     3.677688     0.623363   
Roma Fiumicino         0.477681  0.889042     3.516063     0.184398   
Roma Ciampino          0.548494  0.641125     4.420334     0.238390   
Napoli Capodichino     0.408734  0.517252     3.357908     0.284941   
Palermo Punta Raisi    0.429262  0.615496     1.501407     0.219839   
Catania Fontanarossa   0.384379  0.903022     6.785546     1.309972   
Cagliari Elmas         0.504563  0.865971     6.575292     0.785529   

                       tempabove45  
Airports                            
Milano Malpensa           0.001843  
Bergamo Orio al Serio     0.000000  
Milano Linate             0.035009  
Roma Fiumicino            0.000000  
Roma Ciampino             0.000000  
Napoli Capodichino        0.030912  
Palermo Punta Raisi       0.000000  
Catania Fontanarossa      0.137948  
Cagliari Elmas            0.044790  
Data for rcp45_2041-2070:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.617368  0.952694     5.178634     1.453482   
Bergamo Orio al Serio  0.618357  0.922267     5.046188     1.029140   
Milano Linate          0.601042  0.979410     6.309758     2.049859   
Roma Fiumicino         0.459624  0.913802     7.035359     0.612182   
Roma Ciampino          0.468233  0.917239     6.412250     0.742404   
Napoli Capodichino     0.379854  0.941929     6.335132     0.674627   
Palermo Punta Raisi    0.379039  0.766979     2.219101     0.325286   
Catania Fontanarossa   0.358439  0.817603     8.728038     1.987495   
Cagliari Elmas         0.406472  1.066539     9.642676     1.840480   

                       tempabove45  
Airports                            
Milano Malpensa           0.062202  
Bergamo Orio al Serio     0.009213  
Milano Linate             0.099087  
Roma Fiumicino            0.028734  
Roma Ciampino             0.009213  
Napoli Capodichino        0.111736  
Palermo Punta Raisi       0.000000  
Catania Fontanarossa      0.233092  
Cagliari Elmas            0.098914  
Data for rcp85_2041-2070:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.731262  0.702369     7.608554     2.444121   
Bergamo Orio al Serio  0.698533  0.953890     7.838790     1.785591   
Milano Linate          0.702486  0.904333     8.972479     3.594999   
Roma Fiumicino         0.561790  0.751451     9.882092     1.204068   
Roma Ciampino          0.592269  0.673416    10.515683     1.329396   
Napoli Capodichino     0.509219  0.927290     8.358044     1.045679   
Palermo Punta Raisi    0.259160  0.795024     2.879451     0.715160   
Catania Fontanarossa   0.331662  0.709035    12.205804     3.459762   
Cagliari Elmas         0.438389  0.798211    12.976156     2.727733   

                       tempabove45  
Airports                            
Milano Malpensa           0.135919  
Bergamo Orio al Serio     0.012423  
Milano Linate             0.165114  
Roma Fiumicino            0.000000  
Roma Ciampino             0.012423  
Napoli Capodichino        0.194976  
Palermo Punta Raisi       0.018426  
Catania Fontanarossa      0.526887  
Cagliari Elmas            0.186153  
Data for rcp26_2071-2100:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.623893  1.057265     2.787464     0.705000   
Bergamo Orio al Serio  0.614063  0.844754     2.986865     0.417140   
Milano Linate          0.605729  0.893574     3.239592     0.930525   
Roma Fiumicino         0.604547  0.889843     3.809839     0.291942   
Roma Ciampino          0.686293  0.850379     3.906746     0.303159   
Napoli Capodichino     0.567988  1.046285     4.070541     0.310695   
Palermo Punta Raisi    0.375270  0.635072     1.273731     0.259678   
Catania Fontanarossa   0.338311  0.815669     5.564975     1.238261   
Cagliari Elmas         0.463306  0.997664     5.794419     0.796488   

                       tempabove45  
Airports                            
Milano Malpensa           0.036918  
Bergamo Orio al Serio     0.009213  
Milano Linate             0.046128  
Roma Fiumicino            0.000000  
Roma Ciampino             0.000000  
Napoli Capodichino        0.045851  
Palermo Punta Raisi       0.000000  
Catania Fontanarossa      0.243473  
Cagliari Elmas            0.067268  
Data for rcp45_2071-2100:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        0.733141  1.106038     6.808542     2.329334   
Bergamo Orio al Serio  0.686460  1.131841     7.188333     1.675326   
Milano Linate          0.686166  1.116730     8.451864     3.238049   
Roma Fiumicino         0.559556  0.911627     8.887000     1.043347   
Roma Ciampino          0.634023  0.996063     9.183876     1.150653   
Napoli Capodichino     0.574716  0.996843     8.523521     1.098984   
Palermo Punta Raisi    0.513738  0.819404     3.463530     0.741230   
Catania Fontanarossa   0.523745  0.922735    12.531390     3.078992   
Cagliari Elmas         0.617601  1.385469    13.637557     2.652229   

                       tempabove45  
Airports                            
Milano Malpensa           0.178953  
Bergamo Orio al Serio     0.021403  
Milano Linate             0.206574  
Roma Fiumicino            0.038446  
Roma Ciampino             0.032889  
Napoli Capodichino        0.190023  
Palermo Punta Raisi       0.009531  
Catania Fontanarossa      0.349276  
Cagliari Elmas            0.133640  
Data for rcp85_2071-2100:
                            p95      p999  tempabove35  tempabove40  \
Airports                                                              
Milano Malpensa        1.059890  1.376907    15.382883     6.429328   
Bergamo Orio al Serio  1.081600  1.321048    15.864742     5.901763   
Milano Linate          1.003152  1.452095    17.512472     8.703780   
Roma Fiumicino         0.770016  0.997169    21.143930     3.943505   
Roma Ciampino          0.770391  1.041001    19.446971     4.614446   
Napoli Capodichino     0.799083  1.102807    20.606998     3.783762   
Palermo Punta Raisi    0.571223  1.017339     9.178618     1.855474   
Catania Fontanarossa   0.564423  0.871270    18.413071     8.445586   
Cagliari Elmas         0.637520  1.222879    20.648634     7.861219   

                       tempabove45  
Airports                            
Milano Malpensa           1.048282  
Bergamo Orio al Serio     0.375436  
Milano Linate             1.448174  
Roma Fiumicino            0.162805  
Roma Ciampino             0.174963  
Napoli Capodichino        0.416115  
Palermo Punta Raisi       0.129440  
Catania Fontanarossa      1.193348  
Cagliari Elmas            0.643428  

Example of the output for the hazard of extrem temperature for the scenario RCP 2.6 and time period 2021-2050#

df = pd.read_csv('/work/cmcc/dg07124/climax/indicators/cordex2/temp_std_ensembles/temp_std_rcp26_2021-2050_data.csv', index_col='Airports')
df
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.681519 1.173082 3.318777 0.787577 0.001843
Bergamo Orio al Serio 0.657671 1.149640 3.564539 0.249772 0.000000
Milano Linate 0.612470 1.268595 4.648652 0.804932 0.053435
Roma Fiumicino 0.524879 0.825922 4.588714 0.216768 0.000000
Roma Ciampino 0.584376 0.827377 5.180357 0.228932 0.000000
Napoli Capodichino 0.424670 0.845480 3.800186 0.465685 0.071570
Palermo Punta Raisi 0.302887 0.615009 1.390151 0.232121 0.000000
Catania Fontanarossa 0.351584 0.753102 6.414966 1.084037 0.143384
Cagliari Elmas 0.476794 0.893550 7.222046 0.619808 0.018426
# Define the folder path where your CSV files are stored
csv_folder_path = '/work/cmcc/dg07124/climax/indicators/cordex2/temp_std_ensembles'

# List all the CSV files in the folder
csv_files = [f for f in os.listdir(csv_folder_path) if f.endswith('.csv')]
csv_files
['temp_std_rcp85_2041-2070_data.csv',
 'temp_std_rcp45_2041-2070_data.csv',
 'temp_std_rcp45_2071-2100_data.csv',
 'temp_std_rcp26_2071-2100_data.csv',
 'temp_std_rcp45_2021-2050_data.csv',
 'temp_std_rcp26_2021-2050_data.csv',
 'temp_std_rcp85_2021-2050_data.csv',
 'temp_std_rcp85_2071-2100_data.csv',
 'temp_std_rcp26_2041-2070_data.csv']
# Open each CSV (Standard Deviation for the Hazarsd for Extreme Temperature) as a DataFrame
for csv_file in csv_files:
    file_path = os.path.join(csv_folder_path, csv_file)
    df = pd.read_csv(file_path, index_col='Airports')
    
    print(f"\n\033[1mStandard Deviation Hazard for: {csv_file}\033[0m\n")
    display(df)
Standard Deviation Hazard for: temp_std_rcp85_2041-2070_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.731262 0.702369 7.608554 2.444121 0.135919
Bergamo Orio al Serio 0.698533 0.953890 7.838790 1.785591 0.012423
Milano Linate 0.702486 0.904333 8.972479 3.594999 0.165114
Roma Fiumicino 0.561790 0.751451 9.882092 1.204068 0.000000
Roma Ciampino 0.592269 0.673416 10.515683 1.329396 0.012423
Napoli Capodichino 0.509219 0.927290 8.358044 1.045679 0.194976
Palermo Punta Raisi 0.259160 0.795024 2.879451 0.715160 0.018426
Catania Fontanarossa 0.331662 0.709035 12.205804 3.459762 0.526887
Cagliari Elmas 0.438389 0.798211 12.976156 2.727733 0.186153
Standard Deviation Hazard for: temp_std_rcp45_2041-2070_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.617368 0.952694 5.178634 1.453482 0.062202
Bergamo Orio al Serio 0.618357 0.922267 5.046188 1.029140 0.009213
Milano Linate 0.601042 0.979410 6.309758 2.049859 0.099087
Roma Fiumicino 0.459624 0.913802 7.035359 0.612182 0.028734
Roma Ciampino 0.468233 0.917239 6.412250 0.742404 0.009213
Napoli Capodichino 0.379854 0.941929 6.335132 0.674627 0.111736
Palermo Punta Raisi 0.379039 0.766979 2.219101 0.325286 0.000000
Catania Fontanarossa 0.358439 0.817603 8.728038 1.987495 0.233092
Cagliari Elmas 0.406472 1.066539 9.642676 1.840480 0.098914
Standard Deviation Hazard for: temp_std_rcp45_2071-2100_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.733141 1.106038 6.808542 2.329334 0.178953
Bergamo Orio al Serio 0.686460 1.131841 7.188333 1.675326 0.021403
Milano Linate 0.686166 1.116730 8.451864 3.238049 0.206574
Roma Fiumicino 0.559556 0.911627 8.887000 1.043347 0.038446
Roma Ciampino 0.634023 0.996063 9.183876 1.150653 0.032889
Napoli Capodichino 0.574716 0.996843 8.523521 1.098984 0.190023
Palermo Punta Raisi 0.513738 0.819404 3.463530 0.741230 0.009531
Catania Fontanarossa 0.523745 0.922735 12.531390 3.078992 0.349276
Cagliari Elmas 0.617601 1.385469 13.637557 2.652229 0.133640
Standard Deviation Hazard for: temp_std_rcp26_2071-2100_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.623893 1.057265 2.787464 0.705000 0.036918
Bergamo Orio al Serio 0.614063 0.844754 2.986865 0.417140 0.009213
Milano Linate 0.605729 0.893574 3.239592 0.930525 0.046128
Roma Fiumicino 0.604547 0.889843 3.809839 0.291942 0.000000
Roma Ciampino 0.686293 0.850379 3.906746 0.303159 0.000000
Napoli Capodichino 0.567988 1.046285 4.070541 0.310695 0.045851
Palermo Punta Raisi 0.375270 0.635072 1.273731 0.259678 0.000000
Catania Fontanarossa 0.338311 0.815669 5.564975 1.238261 0.243473
Cagliari Elmas 0.463306 0.997664 5.794419 0.796488 0.067268
Standard Deviation Hazard for: temp_std_rcp45_2021-2050_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.446618 1.010088 3.333919 0.809989 0.016583
Bergamo Orio al Serio 0.441997 0.935308 3.396257 0.533834 0.000000
Milano Linate 0.423465 0.907300 4.252840 1.307682 0.038050
Roma Fiumicino 0.387599 0.745171 4.653045 0.345611 0.009213
Roma Ciampino 0.400369 0.590373 4.664936 0.335586 0.000000
Napoli Capodichino 0.359800 0.858633 3.943516 0.550707 0.082207
Palermo Punta Raisi 0.308694 0.471801 2.051202 0.342317 0.000000
Catania Fontanarossa 0.233058 0.670039 5.359851 1.529307 0.271141
Cagliari Elmas 0.361362 0.767072 6.100119 1.202726 0.025459
Standard Deviation Hazard for: temp_std_rcp26_2021-2050_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.681519 1.173082 3.318777 0.787577 0.001843
Bergamo Orio al Serio 0.657671 1.149640 3.564539 0.249772 0.000000
Milano Linate 0.612470 1.268595 4.648652 0.804932 0.053435
Roma Fiumicino 0.524879 0.825922 4.588714 0.216768 0.000000
Roma Ciampino 0.584376 0.827377 5.180357 0.228932 0.000000
Napoli Capodichino 0.424670 0.845480 3.800186 0.465685 0.071570
Palermo Punta Raisi 0.302887 0.615009 1.390151 0.232121 0.000000
Catania Fontanarossa 0.351584 0.753102 6.414966 1.084037 0.143384
Cagliari Elmas 0.476794 0.893550 7.222046 0.619808 0.018426
Standard Deviation Hazard for: temp_std_rcp85_2021-2050_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.483706 1.226128 3.741642 1.194269 0.054916
Bergamo Orio al Serio 0.505754 1.372640 4.033515 0.815977 0.000000
Milano Linate 0.466678 1.423913 4.642170 1.776248 0.148881
Roma Fiumicino 0.449555 1.080606 5.783633 0.533596 0.009213
Roma Ciampino 0.469419 1.009794 5.910766 0.547640 0.000000
Napoli Capodichino 0.406028 1.018716 4.523608 0.626797 0.119949
Palermo Punta Raisi 0.271204 0.714727 1.822134 0.343559 0.000000
Catania Fontanarossa 0.311886 0.899216 7.422970 2.053937 0.253224
Cagliari Elmas 0.389761 1.210050 7.756357 1.100951 0.045134
Standard Deviation Hazard for: temp_std_rcp85_2071-2100_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 1.059890 1.376907 15.382883 6.429328 1.048282
Bergamo Orio al Serio 1.081600 1.321048 15.864742 5.901763 0.375436
Milano Linate 1.003152 1.452095 17.512472 8.703780 1.448174
Roma Fiumicino 0.770016 0.997169 21.143930 3.943505 0.162805
Roma Ciampino 0.770391 1.041001 19.446971 4.614446 0.174963
Napoli Capodichino 0.799083 1.102807 20.606998 3.783762 0.416115
Palermo Punta Raisi 0.571223 1.017339 9.178618 1.855474 0.129440
Catania Fontanarossa 0.564423 0.871270 18.413071 8.445586 1.193348
Cagliari Elmas 0.637520 1.222879 20.648634 7.861219 0.643428
Standard Deviation Hazard for: temp_std_rcp26_2041-2070_data.csv
p95 p999 tempabove35 tempabove40 tempabove45
Airports
Milano Malpensa 0.613934 1.173375 2.581564 0.629350 0.001843
Bergamo Orio al Serio 0.592966 1.119159 2.953666 0.240175 0.000000
Milano Linate 0.590273 1.140470 3.677688 0.623363 0.035009
Roma Fiumicino 0.477681 0.889042 3.516063 0.184398 0.000000
Roma Ciampino 0.548494 0.641125 4.420334 0.238390 0.000000
Napoli Capodichino 0.408734 0.517252 3.357908 0.284941 0.030912
Palermo Punta Raisi 0.429262 0.615496 1.501407 0.219839 0.000000
Catania Fontanarossa 0.384379 0.903022 6.785546 1.309972 0.137948
Cagliari Elmas 0.504563 0.865971 6.575292 0.785529 0.044790